154 research outputs found

    The Yo-Yo intermittent recovery test level 1 is reliable in young high-level soccer players

    Full text link
    The aim of the study was to investigate test reliability of the Yo-Yo intermittent recovery test level 1 (YYIR1) in 36 high-level youth soccer players, aged between 13 and 18 years. Players were divided into three age groups (U15, U17 and U19) and completed three YYIR1 in three consecutive weeks. Pairwise comparisons were used to investigate test reliability (for distances and heart rate responses) using technical error (TE), coefficient of variation (CV), intra-class correlation (ICC) and limits of agreement (LOA) with Bland-Altman plots. The mean YYIR1 distances for the U15, U17 and U19 groups were 2024 ± 470 m, 2404 ± 347 m and 2547 ± 337 m, respectively. The results revealed that the TEs varied between 74 and 172 m, CVs between 3.0 and 7.5%, and ICCs between 0.87 and 0.95 across all age groups for the YYIR1 distance. For heart rate responses, the TEs varied between 1 and 6 bpm, CVs between 0.7 and 4.8%, and ICCs between 0.73 and 0.97. The small ratio LOA revealed that any two YYIR1 performances in one week will not differ by more than 9 to 28% due to measurement error. In summary, the YYIR1 performance and the physiological responses have proven to be highly reliable in a sample of Belgian high-level youth soccer players, aged between 13 and 18 years. The demonstrated high level of intermittent endurance capacity in all age groups may be used for comparison of other prospective young soccer players

    Relative age, biological maturation and anaerobic characteristics in elite youth soccer players

    Full text link
    Being relatively older and having an advanced biological maturation status have been associated with increased likelihood of selection in young elite soccer players. The aims of the study were to investigate the presence of a relative age effect (RAE) and the influence of birth quarter on anthropometry, biological maturity and anaerobic parameters in 374 elite Belgian youth soccer players. The sample was divided into 3 age groups, each subdivided into 4 birth quarters (BQ). Players had their APHV estimated and height, weight, SBJ, CMJ, sprint 5 and 30 m were assessed. Overall, more players were born in BQ1 (42.3%) compared with players born in BQ4 (13.7%). Further, MANCOVA revealed no differences in all parameters between the 4 BQ's, controlled for age and APHV. These results suggest that relatively youngest players can offset the RAE if they enter puberty earlier. Furthermore, the results demonstrated possible differences between BQ1 and BQ4, suggesting that caution is necessary when estimating differences between players because of large discrepancies between statistical and practical significance. These findings also show that coaches should develop realistic expectations of the physical abilities of younger players and these expectations should be made in the context of biological characteristics rather than chronological age-based standards. © Georg Thieme Verlag KG Stuttgart. New York

    A longitudinal study investigating the stability of anthropometry and soccerspecific endurance in pubertal high-level youth soccer players

    Get PDF
    © 2015, Journal of Sports Science and Medicine. All rights reserved. We investigated the evolution and stability of anthropometric and soccer-specific endurance characteristics of 42 high-level, pubertal soccer players with high, average and low yo-yo intermittent recovery test level 1 (YYIR1) baseline performances over two and four years. The rates of improvement were calculated for each performance group, and intra-class correlations were used to verify short- and long-term stability. The main finding was that after two and four years, the magnitudes of the differences at baseline were reduced, although players with high YYIR1 baseline performance still covered the largest distance (e.g., low from 703 m to 2126 m; high from 1503 m to 2434 m over four years). Furthermore, the YYIR1 showed a high stability over two years (ICC = 0.76) and a moderate stability over four years (ICC = 0.59), due to large intra-individual differences in YYIR1 performances over time. Anthropometric measures showed very high stability (ICCs between 0.94 to 0.97) over a two-year period, in comparison with a moderate stability (ICCs between 0.57 and 0.75) over four years. These results confirm the moderate-to-high stability of high-intensity running performance in young soccer players, and suggest that the longer the follow-up, the lower the ability to predict player’s future potential in running performance. They also show that with growth and maturation, poor performers might only partially catch up their fitter counterparts between 12 and 16 years

    Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games

    Get PDF
    In Association Football, the study of variability in players' movement trajectories during performance can provide insights on tactical behaviours. This study aimed to analyse the movement variability present in: i) the players' actions zones and ii), distances travelled over time, considered as a player's positional spatial reference. Additionally, we investigated whether the movement variability characteristics of players from different skill levels varied. Two groups of U-17 yrs players of different performance levels (national and regional) performed in three small-sided games with varying pitch dimensions (small, intermediate and large). Linear and non-linear analyses were used to capture the magnitude and structure of their movement variability. Results showed that increases in pitch size resulted in more restricted action zones and higher distance values from personal spatial positional references for both groups. National-level players were more sensitive to pitch modifications and displayed more variability than regional-level players in the small and intermediate pitches. These findings advance understanding about individual tactical behaviours in Association Football and have implications for training design, using pitch size manipulation

    Adiposity and Age Explain Most of the Association between Physical Activity and Fitness in Physically Active Men

    Get PDF
    BACKGROUND: To determine if there is an association between physical activity assessed by the short version of the International Physical Activity Questionnaire (IPAQ) and cardiorespiratory and muscular fitness. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and eighty-two young males (age range: 20-55 years) completed the short form of the IPAQ to assess physical activity. Body composition (dual-energy X-Ray absorptiometry), muscular fitness (static and dynamic muscle force and power, vertical jump height, running speed [30 m sprint], anaerobic capacity [300 m running test]) and cardiorespiratory fitness (estimated VO(2)max: 20 m shuttle run test) were also determined in all subjects. Activity-related energy expenditure of moderate and vigorous intensity (EEPA(moderate) and EEPA(vigorous), respectively) was inversely associated with indices of adiposity (r = -0.21 to -0.37, P<0.05). Cardiorespiratory fitness (VO(2)max) was positively associated with LogEEPA(moderate) (r = 0.26, P<0.05) and LogEEPA(vigorous) (r = 0.27). However, no association between VO(2)max with LogEEPA(moderate), LogEPPA(vigorous) and LogEEPA(total) was observed after adjusting for the percentage of body fat. Multiple stepwise regression analysis to predict VO(2)max from LogEEPA(walking), LogEEPA(moderate), LogEEPA(vigorous), LogEEPA(total), age and percentage of body fat (%fat) showed that the %fat alone explained 62% of the variance in VO(2)max and that the age added another 10%, while the other variables did not add predictive value to the model [VO(2)max  = 129.6-(25.1× Log %fat) - (34.0× Log age); SEE: 4.3 ml.kg(-1). min(-1); R(2) = 0.72 (P<0.05)]. No positive association between muscular fitness-related variables and physical activity was observed, even after adjusting for body fat or body fat and age. CONCLUSIONS/SIGNIFICANCE: Adiposity and age are the strongest predictors of VO(2)max in healthy men. The energy expended in moderate and vigorous physical activities is inversely associated with adiposity. Muscular fitness does not appear to be associated with physical activity as assessed by the IPAQ

    Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal

    Get PDF
    Aims: Investigating tracking of fatness from childhood to adolescence, early adolescence to young adulthood and late adolescence to young adulthood. Subjects and methods: Participants from the Madeira Growth Study were followed during an average period of 7.2 years. Height, body mass, skin-folds and circumferences were measured, nine health- and performance-related tests were administered and the Baecke questionnaire was used to assess physical activity. Skeletal maturity was estimated using the TW3 method. Results: The prevalence of overweight plus obesity ranged from 8.2–20.0% at baseline and from 20.4–40.0% at followup, in boys. Corresponding percentages for girls were 10.6– 12.0% and 13.2–18.0%. Inter-age correlations for fatness indicators ranged from 0.43–0.77. BMI, waist circumference and sum of skin-folds at 8, 12 and 16-years old were the main predictors of these variables at 15, 19 and 23-years old, respectively. Strength, muscular endurance and aerobic fitness were negatively related to body fatness. Physical activity and maturation were independently associated with adolescent (15 years) and young adult (19 years) fatness. Conclusions: Over 7.2 years, tracking was moderate-to-high for fatness. Variance was explained by fatness indicators and to a small extent by physical fitness, physical activity and maturation

    Changes in physical activity following a genetic-based internet-delivered personalized intervention: randomized controlled trial (Food4Me)

    Get PDF
    Background: There is evidence that physical activity (PA) can attenuate the influence of the fat mass- and obesity-associated (FTO) genotype on the risk to develop obesity. However, whether providing personalized information on FTO genotype leads to changes in PA is unknown. Objective: The purpose of this study was to determine if disclosing FTO risk had an impact on change in PA following a 6-month intervention. Methods: The single nucleotide polymorphism (SNP) rs9939609 in the FTO gene was genotyped in 1279 participants of the Food4Me study, a four-arm, Web-based randomized controlled trial (RCT) in 7 European countries on the effects of personalized advice on nutrition and PA. PA was measured objectively using a TracmorD accelerometer and was self-reported using the Baecke questionnaire at baseline and 6 months. Differences in baseline PA variables between risk (AA and AT genotypes) and nonrisk (TT genotype) carriers were tested using multiple linear regression. Impact of FTO risk disclosure on PA change at 6 months was assessed among participants with inadequate PA, by including an interaction term in the model: disclosure (yes/no) × FTO risk (yes/no). Results: At baseline, data on PA were available for 874 and 405 participants with the risk and nonrisk FTO genotypes, respectively. There were no significant differences in objectively measured or self-reported baseline PA between risk and nonrisk carriers. A total of 807 (72.05%) of the participants out of 1120 in the personalized groups were encouraged to increase PA at baseline. Knowledge of FTO risk had no impact on PA in either risk or nonrisk carriers after the 6-month intervention. Attrition was higher in nonrisk participants for whom genotype was disclosed (P=.01) compared with their at-risk counterparts. Conclusions: No association between baseline PA and FTO risk genotype was observed. There was no added benefit of disclosing FTO risk on changes in PA in this personalized intervention. Further RCT studies are warranted to confirm whether disclosure of nonrisk genetic test results has adverse effects on engagement in behavior change

    Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D

    Get PDF
    [EN] Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 degrees C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.This work was funded by the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2014-52085-C2-1-P) and by the Generalitat Valenciana (Prometeo). The Severo Ochoa Program (SEV-2012-0267) is gratefully acknowledged. L.L. thanks ITQ for a contract. The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The HAADF-HRSTEM works were conducted in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA)-Universidad de Zaragoza (Spain), a Spanish ICTS National Facility. Some of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3). R.A. also acknowledges funding from the Spanish Ministerio de Economia y Competitividad (FIS2013-46159-C3-3-P) and the European Union Horizon 2020 research and innovation programme under the Marie Sldodowska-Curie grant agreement No. 642742.Liu, L.; Díaz Morales, UM.; Arenal, R.; Agostini, G.; Concepción Heydorn, P.; Corma Canós, A. (2017). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials. 16(1):132-138. https://doi.org/10.1038/NMAT4757S132138161Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Ann. Rev. Chem. Bio. Eng. 3, 545–574 (2012).Gates, B. C. Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).Rivallan, M. et al. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew. Chem. Int. Ed. 49, 785–789 (2010).Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).Philippaerts, A. et al. Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite. Angew. Chem. Int. Ed. 50, 3947–3949 (2011).Kim, J., Kim, W., Seo, Y., Kim, J.-C. & Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J. Catalys. 301, 187–197 (2013).Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015).Kulkarni, A., Lobo-Lapidus, R. J. & Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46, 5997–6015 (2010).Guzman, J. & Gates, B. C. Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans. 1, 3303–3318 (2003).Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994).Camblor, M. A. et al. A new microporous polymorph of silica isomorphous to zeolite MCM-22. Chem. Mater. 8, 2415–2417 (1996).Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H. & Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 47, 5750–5752 (2011).Duchesne, P. N. & Zhang, P. Local structure of fluorescent platinum nanoclusters. Nanoscale 4, 4199–4205 (2012).Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).Yacamán, M. J., Santiago, U. & Mejía-Rosales, S. in Advanced Transmission Electron Microscopy: Applications to Nanomaterials (eds Francis, L., Mayoral, A. & Arenal, R.) 1–29 (Springer, 2015).Jena, P., Khanna, S. N. & Rao, B. K. Physics and Chemistry of Finite Systems: From Clusters to Crystals (Springer, 1992).Yamasaki, J. et al. Ultramicroscopy 151, 224–231 (2015).Sohlberg, K., Pennycook, T. J., Zhoud, W. & Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 17, 3982–4006 (2015).Aydin, C., Lu, J., Browning, N. D. & Gates, B. C. A ‘smart’ catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem. Int. Ed. 51, 5929–5934 (2012).Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).Addou, R. et al. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 × 1. ACS Nano 8, 6321–6333 (2014).Jung, U. et al. Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal. 5, 1539–1551 (2015).Agostini, G. et al. Effect of different face centered cubic nanoparticle distributions on particle size and surface area determination: a theoretical study. J. Phys. Chem. C 118, 4085–4094 (2014).Alexeev, O. & Gates, B. C. EXAFS characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top. Catal. 10, 273–293 (2000).Chakraborty, I., Bhuin, R. G., Bhat, S. & Pradeep, T. Blue emitting undecaplatinum clusters. Nanoscale 6, 8561–8564 (2014).Zheng, J., Nicovich, P. R. & Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 58, 409–431 (2007).Okrut, A. et al. Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst. Nat. Nanotech. 9, 459–465 (2014).Zhou, C. et al. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study. J. Phys. Chem. C 111, 12773–12778 (2007).De La Cruz, C. & Sheppard, N. An exploration of the surfaces of some Pt/SiO2 catalysts using CO as an infrared spectroscopic probe. Spectrochim. Acta A 50, 271–285 (1994).Klünker, C., Balden, M., Lehwald, S. & Daum, W. CO stretching vibrations on Pt(111) and Pt(110) studied by sum frequency generation. Surf. Sci. 360, 104–111 (1996).Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).Levitas, V. I. & Samani, K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2, 284 (2011).Jiang, H., Moon, K.-s., Dong, H., Hua, F. & Wong, C. P. Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006).Nanda, K. K., Kruis, F. E. & Fissan, H. Evaporation of free PbS nanoparticles: evidence of the Kelvin effect. Phys. Rev. Lett. 89, 256103 (2002).Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotech. 5, 506–510 (2010).Koch, C. Determination of Core Structure Periodicity and Point Defect Density along Dislocations PhD thesis, Univ. Arizona (2002).Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015).Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)
    corecore